\m4_TLV_version 1d: tl-x.org \SV m4_include_lib(['https://raw.githubusercontent.com/stevehoover/warp-v_includes/2d6d36baa4d2bc62321f982f78c8fe1456641a43/risc-v_defs.tlv']) // v====================== lib/risc-v_shell_lib.tlv =======================v // Configuration for WARP-V definitions. m4+definitions([' m4_define_vector(['M4_WORD'], 32) m4_define(['M4_EXT_I'], 1) m4_define(['M4_NUM_INSTRS'], 0) m4_echo(m4tlv_riscv_gen__body()) // A single-line M4 macro instantiated at the end of the asm code. // It actually produces a definition of an SV macro that instantiates the IMem conaining the program (that can be parsed without \SV_plus). m4_define(['m4_asm_end'], ['`define READONLY_MEM(ADDR, DATA) assign DATA \= instrs[ADDR[\$clog2(\$size(instrs)) + 1 : 2]]; logic [31:0] instrs [0:M4_NUM_INSTRS-1]; assign instrs \= '{m4_instr0['']m4_forloop(['m4_instr_ind'], 1, M4_NUM_INSTRS, [', m4_echo(['m4_instr']m4_instr_ind)'])};']) ']) // Register File \TLV rf(_entries, _width, $_reset, $_port1_en, $_port1_index, $_port1_data, $_port2_en, $_port2_index, $_port2_data, $_port3_en, $_port3_index, $_port3_data) $rf_wr_en = m4_argn(4, $@); $rf_wr_index[\$clog2(_entries)-1:0] = m4_argn(5, $@); $rf_wr_data[_width-1:0] = m4_argn(6, $@); $rf_rd_en1 = m4_argn(7, $@); $rf_rd_index1[\$clog2(_entries)-1:0] = m4_argn(8, $@); $rf_rd_en2 = m4_argn(10, $@); $rf_rd_index2[\$clog2(_entries)-1:0] = m4_argn(11, $@); /xreg[_entries-1:0] <<1$value[_width-1:0] = /top$_reset ? #xreg : /top$rf_wr_en && (/top$rf_wr_index == #xreg) ? /top$rf_wr_data : $RETAIN; $_port2_data[_width-1:0] = $rf_rd_en1 ? /xreg[$rf_rd_index1]$value : 'X; $_port3_data[_width-1:0] = $rf_rd_en2 ? /xreg[$rf_rd_index2]$value : 'X; // Data Memory \TLV dmem(_entries, _width, $_reset, $_port1_en, $_port1_index, $_port1_data, $_port2_en, $_port2_index, $_port2_data) // Allow expressions for most inputs, so define input signals. $dmem_wr_en = m4_argn(4, $@); $dmem_wr_index[\$clog2(_entries)-1:0] = m4_argn(5, $@); $dmem_wr_data[_width-1:0] = m4_argn(6, $@); $dmem_rd_en = m4_argn(7, $@); $dmem_rd_index[\$clog2(_entries)-1:0] = m4_argn(8, $@); /dmem[_entries-1:0] <<1$value[_width-1:0] = /top$_reset ? #dmem : /top$dmem_wr_en && (/top$dmem_wr_index == #dmem) ? /top$dmem_wr_data : $RETAIN; $_port2_data[_width-1:0] = $dmem_rd_en ? /dmem[$dmem_rd_index]$value : 'X; \TLV cpu_viz() // String representations of the instructions for debug. \SV_plus // A default signal for ones that are not found. logic sticky_zero; assign sticky_zero = 0; // Instruction strings from the assembler. logic [40*8-1:0] instr_strs [0:M4_NUM_INSTRS]; assign instr_strs = '{m4_asm_mem_expr "END "}; /cpuviz \viz_alpha initEach() { let imem_header = new fabric.Text("📒 Instr. Memory", { top: -29, left: -440, fontSize: 18, fontWeight: 800, fontFamily: "monospace" }) let decode_header = new fabric.Text("⚙️ Instr. Decode", { top: 0, left: 40, fontSize: 18, fontWeight: 800, fontFamily: "monospace" }) let rf_header = new fabric.Text("📂 Reg. File", { top: -29 - 40, left: 280, fontSize: 18, fontWeight: 800, fontFamily: "monospace" }) let dmem_header = new fabric.Text("🗃️ Data Memory", { top: -29 - 40, left: 450, fontSize: 18, fontWeight: 800, fontFamily: "monospace" }) let missing = new fabric.Text("", { top: 420, left: -400, fontSize: 16, fontWeight: 500, fontFamily: "monospace", fill: "purple" }) let missing_sigs = new fabric.Group( [new fabric.Text("🚨 Missing Signals", { top: 350, left: -400, fontSize: 18, fontWeight: 800, fill: "red", fontFamily: "monospace" }), new fabric.Rect({ top: 400, left: -500, fill: "#ffffe0", width: 400, height: 300, stroke: "black" }), missing ], {visible: false} ) return {missing, objects: {imem_header, decode_header, rf_header, dmem_header, missing_sigs}}; }, renderEach: function() { var missing_list = ""; // String of missing signals. let sticky_zero = this.svSigRef(`sticky_zero`); // A default zero-valued signal. // Attempt to look up a signal, using sticky_zero as default and updating missing_list if expected. siggen = (name, full_name, expected = true) => { var sig = this.svSigRef(full_name ? full_name : `L0_${name}_a0`) if (sig == null) { missing_list += `◾ $${name} \n`; sig = sticky_zero; } return sig } // Look up signal, and it's ok if it doesn't exist. siggen_rf_dmem = (name, scope) => { return siggen(name, scope, false) } // Determine which is_xxx signal is asserted. siggen_mnemonic = () => { let instrs = ["lui", "auipc", "jal", "jalr", "beq", "bne", "blt", "bge", "bltu", "bgeu", "lb", "lh", "lw", "lbu", "lhu", "sb", "sh", "sw", "addi", "slti", "sltiu", "xori", "ori", "andi", "slli", "srli", "srai", "add", "sub", "sll", "slt", "sltu", "xor", "srl", "sra", "or", "and", "csrrw", "csrrs", "csrrc", "csrrwi", "csrrsi", "csrrci", "load", "store"]; for(i=0;i { return valid ? `r${regNum}` : `rX` // valid ? `r${regNum} (${regValue})` : `rX` }; let immStr = (valid, immValue) => { immValue = parseInt(immValue,2) + 2*(immValue[0] << 31) return valid ? `i[${immValue}]` : ``; }; let srcStr = ($src, $valid, $reg, $value) => { return $valid.asBool(false) ? `\n ${regStr(true, $reg.asInt(NaN), $value.asInt(NaN))}` : ""; }; let str = `${regStr(rd_valid.asBool(false), rd.asInt(NaN), result.asInt(NaN))}\n` + ` = ${mnemonic}${srcStr(1, rs1_valid, rs1, src1_value)}${srcStr(2, rs2_valid, rs2, src2_value)}\n` + ` ${immStr(imm_valid.asBool(false), imm.asBinaryStr())}`; let instrWithValues = new fabric.Text(str, { top: 70, left: 65, fill: color, fontSize: 14, fontFamily: "monospace" }); // Animate fetch (and provide onChange behavior for other animation). let fetch_instr_str = siggen(`instr_strs(${pc.asInt() >> 2})`, `instr_strs(${pc.asInt() >> 2})`).asString("UNKNOWN fetch instr") let fetch_instr_viz = new fabric.Text(fetch_instr_str, { top: 18 * (pc.asInt() >> 2), left: -272, fill: "blue", fontSize: 14, fontFamily: "monospace" }) fetch_instr_viz.animate({top: 32, left: 50}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }); let src1_value_viz = new fabric.Text(src1_value.asInt(0).toString(), { left: 316 + 8 * 4, top: 18 * rs1.asInt(0) - 40, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: rs1_valid.asBool(false) }) setTimeout(() => {src1_value_viz.animate({left: 166, top: 70 + 18 * 2}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 })}, 500) let src2_value_viz = new fabric.Text(src2_value.asInt(0).toString(), { left: 316 + 8 * 4, top: 18 * rs2.asInt(0) - 40, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: rs2_valid.asBool(false) }) setTimeout(() => {src2_value_viz.animate({left: 166, top: 70 + 18 * 3}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 })}, 500) let load_viz = new fabric.Text(rf_wr_data.asInt(0).toString(), { left: 470, top: 18 * dmem_rd_index.asInt() + 6 - 40, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 1000, visible: false }) if (dmem_rd_en.asBool()) { setTimeout(() => { load_viz.setVisible(true) load_viz.animate({left: 165, top: 75 + 18 * 1 - 5}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) setTimeout(() => { load_viz.setVisible(true) load_viz.animate({left: 350, top: 18 * rf_wr_index.asInt() - 40}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) }, 1000) }, 500) } let store_viz = new fabric.Text(src2_value.asInt(0).toString(), { left: 165, top: 75 + 18 * 1 - 5, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 1000, visible: false }) if (dmem_wr_en.asBool()) { setTimeout(() => { store_viz.setVisible(true) store_viz.animate({left: 515, top: 18 * dmem_wr_index.asInt() - 40}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) }, 1000) } let result_shadow = new fabric.Text(result.asInt(0).toString(), { left: 146, top: 70, fill: "#d0d0ff", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: false }) let result_viz = new fabric.Text(result.asInt(0).toString(), { left: 146, top: 70, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: false }) if (rd_valid.asBool() && !dmem_rd_en.asBool()) { setTimeout(() => { result_viz.setVisible(true) result_shadow.setVisible(true) result_viz.animate({left: 317 + 8 * 4, top: 18 * rd.asInt(0) - 40}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) }, 1000) } // Missing signals if (missing_list) { this.getInitObject("missing_sigs").setVisible(true) this.fromInit().missing.setText(missing_list) } return {objects: [pcPointer, pc_arrow, rs1_arrow, rs2_arrow, rd_arrow, instrWithValues, fetch_instr_viz, src1_value_viz, src2_value_viz, result_shadow, result_viz, ld_arrow, st_arrow, load_viz, store_viz]}; } /imem[m4_eval(M4_NUM_INSTRS-1):0] // TODO: Cleanly report non-integer ranges. \viz_alpha initEach() { let binary = new fabric.Text("", { top: 18 * this.getIndex(), // TODO: Add support for '#instr_mem'. left: -600, fontSize: 14, fontFamily: "monospace" }) let disassembled = new fabric.Text("", { top: 18 * this.getIndex(), // TODO: Add support for '#instr_mem'. left: -270, fontSize: 14, fontFamily: "monospace" }) return {objects: {binary: binary, disassembled: disassembled}} }, renderEach: function() { let siggen = (name) => {return this.svSigRef(`${name}`) == null ? this.svSigRef(`sticky_zero`) : this.svSigRef(`${name}`)} // Instruction memory is constant, so just create it once. let reset = this.svSigRef(`L0_reset_a0`); let pc = this.svSigRef(`L0_pc_a0`) == null ? this.svSigRef(`sticky_zero`) : this.svSigRef(`L0_pc_a0`); let rd_viz = !reset.asBool() && (pc.asInt() >> 2) == this.getIndex(); if (!global.instr_mem_drawn) { global.instr_mem_drawn = []; } if (!global.instr_mem_drawn[this.getIndex()]) { global.instr_mem_drawn[this.getIndex()] = true let binary_str = siggen(`instrs(${this.getIndex()})`).asBinaryStr(NaN) let disassembled_str = siggen(`instr_strs(${this.getIndex()})`).asString("") disassembled_str = disassembled_str.slice(0, -5) //debugger this.getInitObject("binary").setText(binary_str) this.getInitObject("disassembled").setText(disassembled_str) } this.getInitObject("disassembled").set({textBackgroundColor: rd_viz ? "#b0ffff" : "white"}) } /xreg[31:0] \viz_alpha initEach: function() { return {} // {objects: {reg: reg}}; }, renderEach: function() { siggen = (name) => this.svSigRef(`${name}`) == null ? this.svSigRef(`sticky_zero`) : this.svSigRef(`${name}`); let rf_rd_en1 = siggen(`L0_rf_rd_en1_a0`) let rf_rd_index1 = siggen(`L0_rf_rd_index1_a0`) let rf_rd_en2 = siggen(`L0_rf_rd_en1_a0`) let rf_rd_index2 = siggen(`L0_rf_rd_index2_a0`) let rf_wr_index = siggen(`rf_wr_index_a0`) let wr = siggen(`L1_Xreg[${this.getIndex()}].L1_wr_a0`) let value = siggen(`Xreg_value_a0(${this.getIndex()})`) let rd = (rf_rd_en1.asBool(false) && rf_rd_index1.asInt() == this.getIndex()) || (rf_rd_en2.asBool(false) && rf_rd_index2.asInt() == this.getIndex()) let mod = wr.asBool(false); let wr_color = mod && rf_wr_index.asInt() == this.getIndex() let reg = parseInt(this.getIndex()) let regIdent = reg.toString().padEnd(2, " ") let newValStr = regIdent + ": " let reg_str = new fabric.Text(regIdent + ": " + value.asInt(NaN).toString(), { top: 18 * this.getIndex() - 40, left: 316, fontSize: 14, fill: mod ? "blue" : "black", fontWeight: mod ? 800 : 400, fontFamily: "monospace", textBackgroundColor: rd ? "#b0ffff" : wr_color ? "#ffef87" : null }) if (mod) { setTimeout(() => { console.log(`Reg ${this.getIndex()} written with: ${newValStr}.`) reg_str.set({text: newValStr, dirty: true}) this.global.canvas.renderAll() }, 1500) } return {objects: [reg_str]} } /dmem[31:0] \viz_alpha initEach: function() { return {} // {objects: {reg: reg}}; }, renderEach: function() { siggen = (name) => this.svSigRef(`${name}`) == null ? this.svSigRef(`sticky_zero`) : this.svSigRef(`${name}`); let dmem_rd_en = siggen(`L0_dmem_rd_en_a0`); let dmem_rd_index = siggen(`L0_dmem_rd_index_a0`); let dmem_wr_index = siggen(`L0_dmem_wr_index_a0`); let wr = siggen(`L1_Dmem[${this.getIndex()}].L1_wr_a0`); let value = siggen(`Dmem_value_a0(${this.getIndex()})`); let rd = dmem_rd_en.asBool() && dmem_rd_index.asInt() == this.getIndex(); let mod = wr.asBool(false); let wr_color = mod && dmem_wr_index.asInt() == this.getIndex(); let reg = parseInt(this.getIndex()); let regIdent = reg.toString().padEnd(2, " "); let newValStr = regIdent + ": "; let dmem_str = new fabric.Text(regIdent + ": " + value.asInt(NaN).toString(), { top: 18 * this.getIndex() - 40, left: 480, fontSize: 14, fill: mod ? "blue" : "black", fontWeight: mod ? 800 : 400, fontFamily: "monospace", textBackgroundColor: rd ? "#b0ffff" : wr_color ? "#ffef87" : null }) if (mod) { setTimeout(() => { console.log(`Reg ${this.getIndex()} written with: ${newValStr}.`) dmem_str.set({text: newValStr, dirty: true}) this.global.canvas.renderAll() }, 1500) } return {objects: [dmem_str]} } // ^===================================================================^ \SV m4_makerchip_module // (Expanded in Nav-TLV pane.) \TLV // /====================\ // | Sum 1 to 9 Program | // \====================/ // // Program for MYTH Workshop to test RV32I // Add 1,2,3,...,9 (in that order). // // Regs: // r10 (a0): In: 0, Out: final sum // r12 (a2): 10 // r13 (a3): 1..10 // r14 (a4): Sum // // External to function: m4_asm(ADD, r10, r0, r0) // Initialize r10 (a0) to 0. // Function: m4_asm(ADD, r14, r10, r0) // Initialize sum register a4 with 0x0 m4_asm(ADDI, r12, r10, 1010) // Store count of 10 in register a2. m4_asm(ADD, r13, r10, r0) // Initialize intermediate sum register a3 with 0 // Loop: m4_asm(ADD, r14, r13, r14) // Incremental addition m4_asm(ADDI, r13, r13, 1) // Increment intermediate register by 1 m4_asm(BLT, r13, r12, 1111111111000) // If a3 is less than a2, branch to label named m4_asm(ADD, r10, r14, r0) // Store final result to register a0 so that it can be read by main program m4_asm(ADDI, r1, r0, 101) m4_asm(ORI, r6, r0, 0) m4_asm(SW, r6, r1, 0) m4_asm(LW, r4, r6, 0) // Optional: m4_asm(JAL, r7, 11111111111111101000) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0) m4_asm_end() //1 - PC $reset = *reset; $next_pc[31:0] = $reset ? '0 : $taken_br ? $br_tgt_pc : //9 $is_jal ? $br_tgt_pc : // 13 $is_jalr ? $jalr_tgt_pc : // 13 $pc + 32'd4 ; $pc[31:0] = >>1$next_pc; //2 - IMEM - Read `READONLY_MEM($pc, $$instr[31:0]) //3 - Decode Logic - RISBUJ $is_i_instr = $instr[6:2] ==? 5'b0000x || $instr[6:2] ==? 5'b001x0 || $instr[6:2] ==? 5'b11001 ; $is_r_instr = $instr[6:2] ==? 5'b01011 || $instr[6:2] ==? 5'b011x0 || $instr[6:2] ==? 5'b10100 ; $is_s_instr = $instr[6:2] ==? 5'b0100x; $is_b_instr = $instr[6:2] ==? 5'b11000; $is_j_instr = $instr[6:2] ==? 5'b11011; $is_u_instr = $instr[6:2] ==? 5'b0x101; //4 - Instr Fields $funct7[6:0] = $instr[31:25]; $funct3[2:0] = $instr[14:12]; $rs1[4:0] = $instr[19:15]; $rs2[4:0] = $instr[24:20]; $rd[4:0] = $instr[11:7]; $opcode[6:0] = $instr[6:0]; `BOGUS_USE($funct7 $funct3 $rs1 $rs2 $rd $opcode) $funct7_valid = $is_r_instr; $funct3_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr; $rs1_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr; $rs2_valid = $is_r_instr || $is_s_instr || $is_b_instr ; $rd_valid = $is_r_instr || $is_i_instr || $is_u_instr || $is_j_instr; $imm_valid = $is_i_instr || $is_s_instr || $is_b_instr || $is_u_instr || $is_j_instr; `BOGUS_USE($funct7_valid $funct3_valid $rs1_valid $rs2_valid $rd_valid $imm_valid) //5 - Imm $imm[31:0] = $is_i_instr ? {{21{$instr[31]}}, $instr[30:20]} : $is_s_instr ? {{21{$instr[31]}}, $instr[30:25], $instr[11:7]} : $is_b_instr ? {{20{$instr[31]}}, $instr[7], $instr[30:25], $instr[11:8], 1'b0} : $is_u_instr ? {$instr[31:12], 12'b0} : $is_j_instr ? {{12{$instr[31]}}, $instr[19:12], $instr[20], $instr[30:21], 1'b0} : 32'b0 ; `BOGUS_USE($imm) //6 - Decode Instr Name $dec_bits[10:0] = {$funct7[5], $funct3, $opcode}; $is_beq = $dec_bits ==? 11'bx_000_1100011; $is_bne = $dec_bits ==? 11'bx_001_1100011; $is_blt = $dec_bits ==? 11'bx_100_1100011; $is_bge = $dec_bits ==? 11'bx_101_1100011; $is_bltu = $dec_bits ==? 11'bx_110_1100011; $is_bgeu = $dec_bits ==? 11'bx_111_1100011; $is_addi = $dec_bits ==? 11'bx_000_0010011; $is_add = $dec_bits ==? 11'b0_000_0110011; `BOGUS_USE($is_beq $is_bne $is_blt $is_bge $is_bltu $is_bgeu $is_addi $is_add) //7 - RF Read //$rf_rd_en1 = $rs1_valid; //$rf_rd_index1[4:0] = $rs1; //$src1_value[31:0] = $rf_rd_data1; //$rf_rd_en2 = $rs2_valid; //$rf_rd_index2[4:0] = $rs2; //$src2_value[31:0] = $rf_rd_data2; //`BOGUS_USE($src1_value $src2_value) //8 - ALU //$result[31:0] = $is_addi ? $src1_value + $imm : // $is_add ? $src1_value + $src2_value : // 32'bx; //$rf_wr_en = $rd_valid && ($rd != 5'b0); //$rf_wr_index[4:0] = $rd; //$rf_wr_data[31:0] = $is_load ? $ld_data : $result; // 14 //9- Branch $taken_br = $is_beq ? ($src1_value == $src2_value) : $is_bne ? ($src1_value != $src2_value) : $is_blt ? (($src1_value < $src2_value) ^ ($src1_value[31] != $src2_value[31])) : $is_bge ? (($src1_value >= $src2_value) ^ ($src1_value[31] != $src2_value[31])) : $is_bltu ? ($src1_value < $src2_value) : $is_bgeu ? ($src1_value >= $src2_value) : 1'b0; $br_tgt_pc[31:0] = $pc + $imm; // 10 - Stop //*passed = |cpu/xreg[10]>>5$value == (1+2+3+4+5+6+7+8+9); //11 $is_lui = $dec_bits ==? 11'bx_xxx_0110111 ; $is_auipc = $dec_bits ==? 11'bx_xxx_0010111 ; $is_jal = $dec_bits ==? 11'bx_xxx_1101111 ; $is_jalr = $dec_bits ==? 11'bx_000_1100111 ; $is_load = $opcode == 7'b0000011 ; $is_sb = $dec_bits ==? 11'bx_000_0100011 ; $is_sh = $dec_bits ==? 11'bx_001_0100011 ; $is_sw = $dec_bits ==? 11'bx_010_0100011 ; $is_slti = $dec_bits ==? 11'bx_010_0010011 ; //12 $result[31:0] = $is_addi || $is_load || $is_s_instr ? $src1_value + $imm : // 14 $is_add ? $src1_value + $src2_value : $is_lui ? {$imm[31:12], 12'b0} : $is_auipc ? $pc + $imm : $is_jal ? $pc + 32'd4 : $is_jalr ? $pc + 32'd4 : $is_slti ? (($src1_value[31] == $imm[31]) ? $src1_value < $imm : {31'b0, $src1_value[31]}) : 32'bx; //13 $is_jump = $is_jal || $is_jalr; $jalr_tgt_pc[31:0] = $src1_value + $imm; //14 //$dmem_wr_en = $is_s_instr; //$dmem_rd_en1 = $is_load; //$dmem_rd_index1[4:0] = $result[6:2]; //$dmem_wr_index[4:0] = $result[6:2]; //$dmem_wr_data[31:0] = $src2_value; //$ld_data[31:0] = $dmem_rd_data1; //*passed = |cpu/xreg[4]>>5$value == 0; // YOUR CODE HERE // ... // Note: Because of the magic we are using for visualisation, if visualisation is enabled below, // be sure to avoid having unassigned signals (which you might be using for random inputs) // other than those specifically expected in the labs. You'll get strange errors for these. // Assert these to end simula/toption (before Makerchip cycle limit). *passed = *cyc_cnt > 50; *failed = 1'b0; // Macro instantiations for: // o instruction memory // o register file // o data memory // o CPU visualization //|cpu m4+rf(32, 32, $reset, $rd_valid && ($rd != 5'b0), $rd, $is_load ? $ld_data : $result, $rs1_valid, $rs1, $src1_value[31:0], $rs2_valid, $rs2, $src2_value[31:0]) //m4+rf(32, 32, $reset, $rd_valid && ($rd != 5'b0), $rd, $result, $rs1_valid, $rs1, $src1_value[31:0], $rs2_valid, $rs2, $src2_value[31:0]) m4+dmem(32, 32, $reset, $is_s_instr, $result[6:2], $src2_value, $is_load, $result[6:2], $ld_data[31:0]) m4+cpu_viz() \SV endmodule