\m4_TLV_version 1d: tl-x.org \SV m4_include_lib(['https://raw.githubusercontent.com/stevehoover/warp-v_includes/1d1023ccf8e7b0a8cf8e8fc4f0a823ebb61008e3/risc-v_defs.tlv']) // v====================== lib/risc-v_shell_lib.tlv =======================v // Configuration for WARP-V definitions. m4+definitions([' m4_define_vector(['M4_WORD'], 32) m4_define(['M4_EXT_I'], 1) m4_define(['M4_NUM_INSTRS'], 0) m4_echo(m4tlv_riscv_gen__body()) m4_define(['M4_MAX_CYC'], 70) // Default for m4+test_prog(). // A single-line M4 macro instantiated at the end of the asm code. // It actually produces a definition of an SV macro that instantiates the IMem conaining the program (that can be parsed without \SV_plus). m4_define(['m4_asm_end'], ['`define READONLY_MEM(ADDR, DATA) logic [31:0] instrs [0:M4_NUM_INSTRS-1]; assign DATA = instrs[ADDR[$clog2($size(instrs)) + 1 : 2]]; assign instrs = '{m4_instr0['']m4_forloop(['m4_instr_ind'], 1, M4_NUM_INSTRS, [', m4_echo(['m4_instr']m4_instr_ind)'])};']) m4_define(['m4_asm_end_tlv'], ['`define READONLY_MEM(ADDR, DATA) logic [31:0] instrs [0:M4_NUM_INSTRS-1]; assign DATA \= instrs[ADDR[\$clog2(\$size(instrs)) + 1 : 2]]; assign instrs \= '{m4_instr0['']m4_forloop(['m4_instr_ind'], 1, M4_NUM_INSTRS, [', m4_echo(['m4_instr']m4_instr_ind)'])};']) ']) // Register File \TLV rf(_entries, _width, $_reset, $_port1_en, $_port1_index, $_port1_data, $_port2_en, $_port2_index, $_port2_data, $_port3_en, $_port3_index, $_port3_data) $rf1_wr_en = m4_argn(4, $@); $rf1_wr_index[\$clog2(_entries)-1:0] = m4_argn(5, $@); $rf1_wr_data[_width-1:0] = m4_argn(6, $@); $rf1_rd_en1 = m4_argn(7, $@); $rf1_rd_index1[\$clog2(_entries)-1:0] = m4_argn(8, $@); $rf1_rd_en2 = m4_argn(10, $@); $rf1_rd_index2[\$clog2(_entries)-1:0] = m4_argn(11, $@); /xreg[m4_eval(_entries-1):0] $wr = /top$rf1_wr_en && (/top$rf1_wr_index == #xreg); <<1$value[_width-1:0] = /top$_reset ? #xreg : $wr ? /top$rf1_wr_data : $RETAIN; $_port2_data[_width-1:0] = $rf1_rd_en1 ? /xreg[$rf1_rd_index1]$value : 'X; $_port3_data[_width-1:0] = $rf1_rd_en2 ? /xreg[$rf1_rd_index2]$value : 'X; /xreg[m4_eval(_entries-1):0] \viz_alpha initEach: function() { return {} // {objects: {reg: reg}}; }, renderEach: function() { siggen = (name) => this.svSigRef(`${name}`) == null ? this.svSigRef(`sticky_zero`) : this.svSigRef(`${name}`); let rf_rd_en1 = siggen(`L0_rf1_rd_en1_a0`) let rf_rd_index1 = siggen(`L0_rf1_rd_index1_a0`) let rf_rd_en2 = siggen(`L0_rf1_rd_en2_a0`) let rf_rd_index2 = siggen(`L0_rf1_rd_index2_a0`) let rf_wr_index = siggen(`rf1_wr_index_a0`) let wr = siggen(`L1_Xreg[${this.getIndex()}].L1_wr_a0`) let value = siggen(`Xreg_value_a0(${this.getIndex()})`) let rd = (rf_rd_en1.asBool(false) && rf_rd_index1.asInt() == this.getIndex()) || (rf_rd_en2.asBool(false) && rf_rd_index2.asInt() == this.getIndex()) let mod = wr.asBool(false); let reg = parseInt(this.getIndex()) let regIdent = reg.toString().padEnd(2, " ") let newValStr = (regIdent + ": ").padEnd(14, " ") let reg_str = new fabric.Text((regIdent + ": " + value.asInt(NaN).toString(M4_VIZ_BASE)).padEnd(14, " "), { top: 18 * this.getIndex() - 40, left: 316, fontSize: 14, fill: mod ? "blue" : "black", fontWeight: mod ? 800 : 400, fontFamily: "monospace", textBackgroundColor: rd ? "#b0ffff" : mod ? "#f0f0f0" : "white" }) if (mod) { setTimeout(() => { reg_str.set({text: newValStr, textBackgroundColor: "#d0e8ff", dirty: true}) this.global.canvas.renderAll() }, 1500) } return {objects: [reg_str]} } // Data Memory \TLV dmem(_entries, _width, $_reset, $_port1_en, $_port1_index, $_port1_data, $_port2_en, $_port2_index, $_port2_data) // Allow expressions for most inputs, so define input signals. $dmem1_wr_en = m4_argn(4, $@); $dmem1_wr_index[\$clog2(_entries)-1:0] = m4_argn(5, $@); $dmem1_wr_data[_width-1:0] = m4_argn(6, $@); $dmem1_rd_en = m4_argn(7, $@); $dmem1_rd_index[\$clog2(_entries)-1:0] = m4_argn(8, $@); /dmem[m4_eval(_entries-1):0] $wr = /top$dmem1_wr_en && (/top$dmem1_wr_index == #dmem); <<1$value[_width-1:0] = /top$_reset ? 0 : $wr ? /top$dmem1_wr_data : $RETAIN; $_port2_data[_width-1:0] = $dmem1_rd_en ? /dmem[$dmem1_rd_index]$value : 'X; /dmem[m4_eval(_entries-1):0] \viz_alpha initEach: function() { return {} // {objects: {reg: reg}}; }, renderEach: function() { siggen = (name) => this.svSigRef(`${name}`) == null ? this.svSigRef(`sticky_zero`) : this.svSigRef(`${name}`); // let dmem_rd_en = siggen(`L0_dmem1_rd_en_a0`); let dmem_rd_index = siggen(`L0_dmem1_rd_index_a0`); let dmem_wr_index = siggen(`L0_dmem1_wr_index_a0`); // let wr = siggen(`L1_Dmem[${this.getIndex()}].L1_wr_a0`); let value = siggen(`Dmem_value_a0(${this.getIndex()})`); // let rd = dmem_rd_en.asBool() && dmem_rd_index.asInt() == this.getIndex(); let mod = wr.asBool(false); let reg = parseInt(this.getIndex()); let regIdent = reg.toString().padEnd(2, " "); let newValStr = (regIdent + ": ").padEnd(14, " "); let dmem_str = new fabric.Text((regIdent + ": " + value.asInt(NaN).toString(M4_VIZ_BASE)).padEnd(14, " "), { top: 18 * this.getIndex() - 40, left: 480, fontSize: 14, fill: mod ? "blue" : "black", fontWeight: mod ? 800 : 400, fontFamily: "monospace", textBackgroundColor: rd ? "#b0ffff" : mod ? "#d0e8ff" : "white" }) if (mod) { setTimeout(() => { dmem_str.set({text: newValStr, dirty: true}) this.global.canvas.renderAll() }, 1500) } return {objects: [dmem_str]} } \TLV cpu_viz() // String representations of the instructions for debug. \SV_plus // A default signal for ones that are not found. logic sticky_zero; assign sticky_zero = 0; // Instruction strings from the assembler. logic [40*8-1:0] instr_strs [0:M4_NUM_INSTRS]; assign instr_strs = '{m4_asm_mem_expr "END "}; /cpuviz \viz_alpha m4_define(['M4_IMEM_TOP'], ['m4_ifelse(m4_eval(M4_NUM_INSTRS > 16), 0, 0, m4_eval(0 - (M4_NUM_INSTRS - 16) * 18))']) initEach() { let imem_box = new fabric.Rect({ top: M4_IMEM_TOP - 50, left: -700, fill: "#208028", width: 665, height: 76 + 18 * M4_NUM_INSTRS, stroke: "black", visible: false }) let decode_box = new fabric.Rect({ top: -25, left: -15, fill: "#f8f0e8", width: 280, height: 215, stroke: "#ff8060", visible: false }) let rf_box = new fabric.Rect({ top: -90, left: 306, fill: "#2028b0", width: 145, height: 650, stroke: "black", visible: false }) let dmem_box = new fabric.Rect({ top: -90, left: 470, fill: "#208028", width: 145, height: 650, stroke: "black", visible: false }) let imem_header = new fabric.Text("🗃️ IMem", { top: M4_IMEM_TOP - 35, left: -460, fontSize: 18, fontWeight: 800, fontFamily: "monospace", fill: "white", visible: false }) let decode_header = new fabric.Text("⚙️ Instr. Decode", { top: -4, left: 20, fill: "maroon", fontSize: 18, fontWeight: 800, fontFamily: "monospace", visible: false }) let rf_header = new fabric.Text("📂 RF", { top: -75, left: 316, fontSize: 18, fontWeight: 800, fontFamily: "monospace", fill: "white", visible: false }) let dmem_header = new fabric.Text("🗃️ DMem", { top: -75, left: 480, fontSize: 18, fontWeight: 800, fontFamily: "monospace", fill: "white", visible: false }) let passed = new fabric.Text("", { top: 340, left: -30, fontSize: 46, fontWeight: 800 }) let missing_col1 = new fabric.Text("", { top: 420, left: -480, fontSize: 16, fontWeight: 500, fontFamily: "monospace", fill: "purple" }) let missing_col2 = new fabric.Text("", { top: 420, left: -300, fontSize: 16, fontWeight: 500, fontFamily: "monospace", fill: "purple" }) let missing_sigs = new fabric.Group( [new fabric.Text("🚨 To Be Implemented:", { top: 350, left: -466, fontSize: 18, fontWeight: 800, fill: "red", fontFamily: "monospace" }), new fabric.Rect({ top: 400, left: -500, fill: "#ffffe0", width: 400, height: 300, stroke: "black" }), missing_col1, missing_col2, ], {visible: false} ) return {missing_col1, missing_col2, objects: {imem_box, decode_box, rf_box, dmem_box, imem_header, decode_header, rf_header, dmem_header, passed, missing_sigs}}; }, renderEach() { // Strings (2 columns) of missing signals. var missing_list = ["", ""] var missing_cnt = 0 let sticky_zero = this.svSigRef(`sticky_zero`); // A default zero-valued signal. // Attempt to look up a signal, using sticky_zero as default and updating missing_list if expected. siggen = (name, full_name, expected = true) => { var sig = this.svSigRef(full_name ? full_name : `L0_${name}_a0`) if (sig == null) { sig = sticky_zero; if (expected) { missing_list[missing_cnt > 11 ? 1 : 0] += `◾ $${name} \n`; missing_cnt++ } } return sig } // Look up signal, and it's ok if it doesn't exist. siggen_rf_dmem = (name, scope) => { return siggen(name, scope, false) } // Determine which is_xxx signal is asserted. siggen_mnemonic = () => { let instrs = ["lui", "auipc", "jal", "jalr", "beq", "bne", "blt", "bge", "bltu", "bgeu", "lb", "lh", "lw", "lbu", "lhu", "sb", "sh", "sw", "addi", "slti", "sltiu", "xori", "ori", "andi", "slli", "srli", "srai", "add", "sub", "sll", "slt", "sltu", "xor", "srl", "sra", "or", "and", "csrrw", "csrrs", "csrrc", "csrrwi", "csrrsi", "csrrci", "load", "s_instr"]; for(i=0;i { return valid ? `x${regNum}` : `xX` // valid ? `x${regNum} (${regValue})` : `xX` } let immStr = (valid, immValue) => { immValue = parseInt(immValue,2) + 2*(immValue[0] << 31) return valid ? `i[${immValue}]` : ``; } let srcStr = ($src, $valid, $reg, $value) => { return $valid.asBool(false) ? `\n ${regStr(true, $reg.asInt(NaN), $value.asInt(NaN))}` : ""; } let str = `${regStr(rd_valid.asBool(false), rd.asInt(NaN), result.asInt(NaN))}\n` + ` = ${mnemonic}${srcStr(1, rs1_valid, rs1, src1_value)}${srcStr(2, rs2_valid, rs2, src2_value)}\n` + ` ${immStr(imm_valid.asBool(false), imm.asBinaryStr("0"))}`; let instrWithValues = new fabric.Text(str, { top: 70, left: 65, fill: "blue", fontSize: 14, fontFamily: "monospace", visible: instr != sticky_zero }) // Animate fetch (and provide onChange behavior for other animation). let fetch_instr_str = siggen(`instr_strs(${pc.asInt() >> 2})`, `instr_strs(${pc.asInt() >> 2})`).asString("(?) UNKNOWN fetch instr").substr(4) let fetch_instr_viz = new fabric.Text(fetch_instr_str, { top: M4_IMEM_TOP + 18 * (pc.asInt() >> 2), left: -352 + 8 * 4, fill: "black", fontSize: 14, fontFamily: "monospace", visible: instr != sticky_zero }) fetch_instr_viz.animate({top: 32, left: 10}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) // Animate RF value read/write. let src1_value_viz = new fabric.Text(src1_value.asInt(0).toString(M4_VIZ_BASE), { left: 316 + 8 * 4, top: 18 * rs1.asInt(0) - 40, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: (src1_value != sticky_zero) && rs1_valid.asBool(false) }) setTimeout(() => {src1_value_viz.animate({left: 166, top: 70 + 18 * 2}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 })}, 500) let src2_value_viz = new fabric.Text(src2_value.asInt(0).toString(M4_VIZ_BASE), { left: 316 + 8 * 4, top: 18 * rs2.asInt(0) - 40, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: (src2_value != sticky_zero) && rs2_valid.asBool(false) }) setTimeout(() => {src2_value_viz.animate({left: 166, top: 70 + 18 * 3}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 })}, 500) let load_viz = new fabric.Text(ld_data.asInt(0).toString(M4_VIZ_BASE), { left: 470, top: 18 * dmem_rd_index.asInt() + 6 - 40, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 1000, visible: false }) if (dmem_rd_en.asBool()) { setTimeout(() => { load_viz.setVisible(true) load_viz.animate({left: 146, top: 70}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) setTimeout(() => { load_viz.setVisible(false) }, 500) }, 500) } let store_viz = new fabric.Text(src2_value.asInt(0).toString(M4_VIZ_BASE), { left: 166, top: 70 + 18 * 3, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 1000, visible: false }) if (dmem_wr_en.asBool()) { setTimeout(() => { store_viz.setVisible(true) store_viz.animate({left: 515, top: 18 * dmem_wr_index.asInt() - 40}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) }, 1000) } let result_shadow = new fabric.Text(result.asInt(0).toString(M4_VIZ_BASE), { left: 146, top: 70, fill: "#b0b0df", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: false }) let result_viz = new fabric.Text(rf_wr_data.asInt(0).toString(M4_VIZ_BASE), { left: 146, top: 70, fill: "blue", fontSize: 14, fontFamily: "monospace", fontWeight: 800, visible: false }) if (rd_valid.asBool()) { setTimeout(() => { result_viz.setVisible(rf_wr_data != sticky_zero && rf_wr_en.asBool()) result_shadow.setVisible(result != sticky_zero) result_viz.animate({left: 317 + 8 * 4, top: 18 * rf_wr_index.asInt(0) - 40}, { onChange: this.global.canvas.renderAll.bind(this.global.canvas), duration: 500 }) }, 1000) } // Lab completion // Passed? this.getInitObject("passed").setVisible(false) if (passed) { if (passed.step(-1).asBool()) { this.getInitObject("passed").set({visible: true, text:"Passed !!!", fill: "green"}) } else { // Using an unstable API, so: try { passed.goToSimEnd().step(-1) if (passed.asBool()) { this.getInitObject("passed").set({text:"Sim Passes", visible: true, fill: "lightgray"}) } } catch(e) { } } } // Missing signals if (missing_list[0]) { this.getInitObject("missing_sigs").setVisible(true) this.fromInit().missing_col1.setText(missing_list[0]) this.fromInit().missing_col2.setText(missing_list[1]) } return {objects: [pcPointer, pc_arrow, ...type_texts, rs1_arrow, rs2_arrow, rd_arrow, instrWithValues, fetch_instr_viz, src1_value_viz, src2_value_viz, result_shadow, result_viz, ld_arrow, st_arrow, load_viz, store_viz]}; } /imem[m4_eval(M4_NUM_INSTRS-1):0] \viz_alpha initEach() { let binary = new fabric.Text("", { top: M4_IMEM_TOP + 18 * this.getIndex(), left: -680, fontSize: 14, fontFamily: "monospace", }) let disassembled = new fabric.Text("", { top: M4_IMEM_TOP + 18 * this.getIndex(), left: -350, fontSize: 14, fontFamily: "monospace" }) return {objects: {binary, disassembled}} }, renderEach() { // Instruction memory is constant, so just create it once. let reset = this.svSigRef(`L0_reset_a0`) let pc = this.svSigRef(`L0_pc_a0`) let rd_viz = pc && !reset.asBool() && (pc.asInt() >> 2) == this.getIndex() if (!global.instr_mem_drawn) { global.instr_mem_drawn = [] } if (!global.instr_mem_drawn[this.getIndex()]) { global.instr_mem_drawn[this.getIndex()] = true let instr = this.svSigRef(`instrs(${this.getIndex()})`) if (instr) { let binary_str = instr.goToSimStart().asBinaryStr("") this.getInitObject("binary").setText(binary_str) } let disassembled = this.svSigRef(`instr_strs(${this.getIndex()})`) if (disassembled) { let disassembled_str = disassembled.goToSimStart().asString("") disassembled_str = disassembled_str.slice(0, -5) this.getInitObject("disassembled").setText(disassembled_str) } } this.getInitObject("disassembled").set({textBackgroundColor: rd_viz ? "#b0ffff" : "white"}) this.getInitObject("binary") .set({textBackgroundColor: rd_viz ? "#b0ffff" : "white"}) } \TLV tb() $passed_cond = (/xreg[30]$value == 32'b1) && (! $reset && $next_pc[31:0] == $pc[31:0]); *passed = >>2$passed_cond; \TLV test_prog() // /=======================\ // | Test each instruction | // \=======================/ // // Some constant values to use as operands. m4_asm(ADDI, x1, x0, 10101) // An operand value of 21. m4_asm(ADDI, x2, x0, 111) // An operand value of 7. m4_asm(ADDI, x3, x0, 111111111100) // An operand value of -4. // Execute one of each instruction, XORing subtracting (via ADDI) the expected value. // ANDI: m4_asm(ANDI, x5, x1, 1011100) m4_asm(XORI, x5, x5, 10101) // ORI: m4_asm(ORI, x6, x1, 1011100) m4_asm(XORI, x6, x6, 1011100) // ADDI: m4_asm(ADDI, x7, x1, 111) m4_asm(XORI, x7, x7, 11101) // ADDI: m4_asm(SLLI, x8, x1, 110) m4_asm(XORI, x8, x8, 10101000001) // SLLI: m4_asm(SRLI, x9, x1, 10) m4_asm(XORI, x9, x9, 100) // AND: m4_asm(AND, r10, x1, x2) m4_asm(XORI, x10, x10, 100) // OR: m4_asm(OR, x11, x1, x2) m4_asm(XORI, x11, x11, 10110) // XOR: m4_asm(XOR, x12, x1, x2) m4_asm(XORI, x12, x12, 10011) // ADD: m4_asm(ADD, x13, x1, x2) m4_asm(XORI, x13, x13, 11101) // SUB: m4_asm(SUB, x14, x1, x2) m4_asm(XORI, x14, x14, 1111) // SLL: m4_asm(SLL, x15, x2, x2) m4_asm(XORI, x15, x15, 1110000001) // SRL: m4_asm(SRL, x16, x1, x2) m4_asm(XORI, x16, x16, 1) // SLTU: m4_asm(SLTU, x17, x2, x1) m4_asm(XORI, x17, x17, 0) // SLTIU: m4_asm(SLTIU, x18, x2, 10101) m4_asm(XORI, x18, x18, 0) // LUI: m4_asm(LUI, x19, 0) m4_asm(XORI, x19, x19, 1) // SRAI: m4_asm(SRAI, x20, x3, 1) m4_asm(XORI, x20, x20, 111111111111) // SLT: m4_asm(SLT, x21, x3, x1) m4_asm(XORI, x21, x21, 0) // SLTI: m4_asm(SLTI, x22, x3, 1) m4_asm(XORI, x22, x22, 0) // SRA: m4_asm(SRA, x23, x1, x2) m4_asm(XORI, x23, x23, 1) // AUIPC: m4_asm(AUIPC, x4, 100) m4_asm(SRLI, x24, x4, 111) m4_asm(XORI, x24, x24, 10000000) // JAL: m4_asm(JAL, x25, 10) // x25 = PC of next instr m4_asm(AUIPC, x4, 0) // x4 = PC m4_asm(XOR, x25, x25, x4) # AUIPC and JAR results are the same. m4_asm(XORI, x25, x25, 1) // JALR: m4_asm(JALR, x26, x4, 10000) m4_asm(SUB, x26, x26, x4) // JALR PC+4 - AUIPC PC m4_asm(ADDI, x26, x26, 111111110001) // - 4 instrs, + 1 // SW & LW: m4_asm(SW, x2, x1, 1) m4_asm(LW, x27, x2, 1) m4_asm(XORI, x27, x27, 10100) // Write 1 to remaining registers prior to x30 just to avoid concern. m4_asm(ADDI, x28, x0, 1) m4_asm(ADDI, x29, x0, 1) // Terminate with success condition (regardless of correctness of register values): m4_asm(ADDI, x30, x0, 1) m4_asm(JAL, x0, 0) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0) m4_asm_end_tlv() // (A copy of this appears in the shell code.) \TLV sum_prog() // /====================\ // | Sum 1 to 9 Program | // \====================/ // // Program to test RV32I // Add 1,2,3,...,9 (in that order). // // Regs: // x12 (a2): 10 // x13 (a3): 1..10 // x14 (a4): Sum // m4_asm(ADDI, x14, x0, 0) // Initialize sum register x14 with 0 m4_asm(ADDI, x12, x0, 1010) // Store count of 10 in register x12. m4_asm(ADDI, x13, x0, 1) // Initialize loop count register x13 with 0 // Loop: m4_asm(ADD, x14, x13, x14) // Incremental summation m4_asm(ADDI, x13, x13, 1) // Increment loop count by 1 m4_asm(BLT, x13, x12, 1111111111000) // If x13 is less than x12, branch to label named // Test result value in x14, and set x31 to reflect pass/fail. m4_asm(ADDI, x30, x14, 111111010100) // Subtract expected value of 44 to set x30 to 1 if and only iff the result is 45 (1 + 2 + ... + 9). m4_asm(BGE, x0, x0, 0) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0) m4_asm_end_tlv() m4_define(['M4_MAX_CYC'], 40) // ^===================================================================^ \SV m4_makerchip_module // (Expanded in Nav-TLV pane.) \TLV // Do nothing. \SV endmodule