\m4_TLV_version 1d: tl-x.org \SV m4_include_lib(['https://raw.githubusercontent.com/stevehoover/warp-v_includes/2d6d36baa4d2bc62321f982f78c8fe1456641a43/risc-v_defs.tlv']) m4_include_lib(['https://raw.githubusercontent.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/main/lib/risc-v_shell_lib.tlv']) \SV m4_makerchip_module // (Expanded in Nav-TLV pane.) \TLV // /====================\ // | Sum 1 to 9 Program | // \====================/ // // Program for MYTH Workshop to test RV32I // Add 1,2,3,...,9 (in that order). // // Regs: // r10 (a0): In: 0, Out: final sum // r12 (a2): 10 // r13 (a3): 1..10 // r14 (a4): Sum // // External to function: m4_asm(ADD, r10, r0, r0) // Initialize r10 (a0) to 0. // Function: m4_asm(ADD, r14, r10, r0) // Initialize sum register a4 with 0x0 m4_asm(ADDI, r12, r10, 1010) // Store count of 10 in register a2. m4_asm(ADD, r13, r10, r0) // Initialize intermediate sum register a3 with 0 // Loop: m4_asm(ADD, r14, r13, r14) // Incremental addition m4_asm(ADDI, r13, r13, 1) // Increment intermediate register by 1 m4_asm(BLT, r13, r12, 1111111111000) // If a3 is less than a2, branch to label named m4_asm(ADD, r10, r14, r0) // Store final result to register a0 so that it can be read by main program m4_asm(ADDI, r1, r0, 101) m4_asm(ORI, r6, r0, 0) m4_asm(SW, r6, r1, 0) m4_asm(LW, r4, r6, 0) // Optional: m4_asm(JAL, r7, 11111111111111101000) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0) m4_asm_end() //1 - PC $reset = *reset; $next_pc[31:0] = $reset ? '0 : $taken_br ? $br_tgt_pc : //9 $is_jal ? $br_tgt_pc : // 13 $is_jalr ? $jalr_tgt_pc : // 13 $pc + 32'd4 ; $pc[31:0] = >>1$next_pc; //2 - IMEM - Read `READONLY_MEM($pc, $$instr[31:0]) //3 - Decode Logic - RISBUJ $is_i_instr = $instr[6:2] ==? 5'b0000x || $instr[6:2] ==? 5'b001x0 || $instr[6:2] ==? 5'b11001 ; $is_r_instr = $instr[6:2] ==? 5'b01011 || $instr[6:2] ==? 5'b011x0 || $instr[6:2] ==? 5'b10100 ; $is_s_instr = $instr[6:2] ==? 5'b0100x; $is_b_instr = $instr[6:2] ==? 5'b11000; $is_j_instr = $instr[6:2] ==? 5'b11011; $is_u_instr = $instr[6:2] ==? 5'b0x101; //4 - Instr Fields $funct7[6:0] = $instr[31:25]; $funct3[2:0] = $instr[14:12]; $rs1[4:0] = $instr[19:15]; $rs2[4:0] = $instr[24:20]; $rd[4:0] = $instr[11:7]; $opcode[6:0] = $instr[6:0]; `BOGUS_USE($funct7 $funct3 $rs1 $rs2 $rd $opcode) $funct7_valid = $is_r_instr; $funct3_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr; $rs1_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr; $rs2_valid = $is_r_instr || $is_s_instr || $is_b_instr ; $rd_valid = $is_r_instr || $is_i_instr || $is_u_instr || $is_j_instr; $imm_valid = $is_i_instr || $is_s_instr || $is_b_instr || $is_u_instr || $is_j_instr; `BOGUS_USE($funct7_valid $funct3_valid $rs1_valid $rs2_valid $rd_valid $imm_valid) //5 - Imm $imm[31:0] = $is_i_instr ? {{21{$instr[31]}}, $instr[30:20]} : $is_s_instr ? {{21{$instr[31]}}, $instr[30:25], $instr[11:7]} : $is_b_instr ? {{20{$instr[31]}}, $instr[7], $instr[30:25], $instr[11:8], 1'b0} : $is_u_instr ? {$instr[31:12], 12'b0} : $is_j_instr ? {{12{$instr[31]}}, $instr[19:12], $instr[20], $instr[30:21], 1'b0} : 32'b0 ; `BOGUS_USE($imm) //6 - Decode Instr Name $dec_bits[10:0] = {$funct7[5], $funct3, $opcode}; $is_beq = $dec_bits ==? 11'bx_000_1100011; $is_bne = $dec_bits ==? 11'bx_001_1100011; $is_blt = $dec_bits ==? 11'bx_100_1100011; $is_bge = $dec_bits ==? 11'bx_101_1100011; $is_bltu = $dec_bits ==? 11'bx_110_1100011; $is_bgeu = $dec_bits ==? 11'bx_111_1100011; $is_addi = $dec_bits ==? 11'bx_000_0010011; $is_add = $dec_bits ==? 11'b0_000_0110011; `BOGUS_USE($is_beq $is_bne $is_blt $is_bge $is_bltu $is_bgeu $is_addi $is_add) //7 - RF Read //$rf_rd_en1 = $rs1_valid; //$rf_rd_index1[4:0] = $rs1; //$src1_value[31:0] = $rf_rd_data1; //$rf_rd_en2 = $rs2_valid; //$rf_rd_index2[4:0] = $rs2; //$src2_value[31:0] = $rf_rd_data2; //`BOGUS_USE($src1_value $src2_value) //8 - ALU //$result[31:0] = $is_addi ? $src1_value + $imm : // $is_add ? $src1_value + $src2_value : // 32'bx; //$rf_wr_en = $rd_valid && ($rd != 5'b0); //$rf_wr_index[4:0] = $rd; //$rf_wr_data[31:0] = $is_load ? $ld_data : $result; // 14 //9- Branch $taken_br = $is_beq ? ($src1_value == $src2_value) : $is_bne ? ($src1_value != $src2_value) : $is_blt ? (($src1_value < $src2_value) ^ ($src1_value[31] != $src2_value[31])) : $is_bge ? (($src1_value >= $src2_value) ^ ($src1_value[31] != $src2_value[31])) : $is_bltu ? ($src1_value < $src2_value) : $is_bgeu ? ($src1_value >= $src2_value) : 1'b0; $br_tgt_pc[31:0] = $pc + $imm; // 10 - Stop //*passed = |cpu/xreg[10]>>5$value == (1+2+3+4+5+6+7+8+9); //11 $is_lui = $dec_bits ==? 11'bx_xxx_0110111 ; $is_auipc = $dec_bits ==? 11'bx_xxx_0010111 ; $is_jal = $dec_bits ==? 11'bx_xxx_1101111 ; $is_jalr = $dec_bits ==? 11'bx_000_1100111 ; $is_load = $opcode == 7'b0000011 ; $is_sb = $dec_bits ==? 11'bx_000_0100011 ; $is_sh = $dec_bits ==? 11'bx_001_0100011 ; $is_sw = $dec_bits ==? 11'bx_010_0100011 ; $is_slti = $dec_bits ==? 11'bx_010_0010011 ; //12 $result[31:0] = $is_addi || $is_load || $is_s_instr ? $src1_value + $imm : // 14 $is_add ? $src1_value + $src2_value : $is_lui ? {$imm[31:12], 12'b0} : $is_auipc ? $pc + $imm : $is_jal ? $pc + 32'd4 : $is_jalr ? $pc + 32'd4 : $is_slti ? (($src1_value[31] == $imm[31]) ? $src1_value < $imm : {31'b0, $src1_value[31]}) : 32'bx; //13 $is_jump = $is_jal || $is_jalr; $jalr_tgt_pc[31:0] = $src1_value + $imm; //14 //$dmem_wr_en = $is_s_instr; //$dmem_rd_en1 = $is_load; //$dmem_rd_index1[4:0] = $result[6:2]; //$dmem_wr_index[4:0] = $result[6:2]; //$dmem_wr_data[31:0] = $src2_value; //$ld_data[31:0] = $dmem_rd_data1; //*passed = |cpu/xreg[4]>>5$value == 0; // YOUR CODE HERE // ... // Note: Because of the magic we are using for visualisation, if visualisation is enabled below, // be sure to avoid having unassigned signals (which you might be using for random inputs) // other than those specifically expected in the labs. You'll get strange errors for these. // Assert these to end simula/toption (before Makerchip cycle limit). *passed = *cyc_cnt > 50; *failed = 1'b0; // Macro instantiations for: // o instruction memory // o register file // o data memory // o CPU visualization //|cpu m4+rf(32, 32, $reset, $rd_valid && ($rd != 5'b0), $rd, $is_load ? $ld_data : $result, $rs1_valid, $rs1, $src1_value[31:0], $rs2_valid, $rs2, $src2_value[31:0]) //m4+rf(32, 32, $reset, $rd_valid && ($rd != 5'b0), $rd, $result, $rs1_valid, $rs1, $src1_value[31:0], $rs2_valid, $rs2, $src2_value[31:0]) m4+dmem(32, 32, $reset, $is_s_instr, $result[6:2], $src2_value, $is_load, $result[6:2], $ld_data[31:0]) m4+cpu_viz() \SV endmodule